a2 United States Patent

Weber et al.

US009135296B2

US 9,135,296 B2
*Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SYSTEM, METHOD, AND DATA STRUCTURE
FOR AUTOMATICALLY GENERATING
DATABASE QUERIES WHICH ARE DATA
MODEL INDEPENDENT AND CARDINALITY
INDEPENDENT

Applicant: SAS Institute Inc., Cary, NC (US)
Inventors: Thomas P. Weber, Apex, NC (US);
Frederick J. Levine, Hillsborough, NC
(US); James P. Kelley, Cary, NC (US)
Assignee: SAS Institute Inc., Cary, NC (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.
Appl. No.: 14/445,985
Filed: Jul. 29, 2014
Prior Publication Data
US 2015/0019535 Al Jan. 15, 2015

Related U.S. Application Data

Continuation of application No. 13/471,548, filed on
May 15, 2012, now Pat. No. 8,825,633.

Int. Cl1.
GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01)
U.S. CL

CPC GO6F 17/30424 (2013.01); GOG6F 17/30436
(2013.01); GOGF 17/30554 (2013.01)

Field of Classification Search

USPC e 707/714

See application file for complete search history.

116
14

]

USER PC(S)

(56) References Cited

U.S. PATENT DOCUMENTS

4,497,039 A 1/1985 Kitakami et al.
4,811,207 A 3/1989 Hikita et al.
(Continued)
OTHER PUBLICATIONS

Non-Final Office Action of Feb. 12, 2014 for U.S. Appl. No.
13/471,548, 26 pages.

(Continued)

Primary Examiner — Alex Gofman

Assistant Examiner — Muluemebet Gurmu

(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLLP

(57) ABSTRACT

Systems and methods are provided for performing a query in
a distributed system. In one example, a query generation
system receives an identification of data item components and
associations between the data item components, wherein the
data item components include a measure and a category, and
wherein the identified association indicates that the measure
is independent of another data item component, indicates that
the measure is dependent on another data item component, or
indicates that two or more data item components are corre-
lated. The query generation system creates and executes a
database query for retrieving data item components, wherein
the database query includes a first Uquery, wherein the first
Uquery includes a Mx segment subquery and a U0 segment
subquery, wherein the Mx segment subquery is associated
with a table that contains the measure, a table that contains
columns for a calculated measure, or a correlated table, and
wherein the U0 segment subquery is associated with a table
that contains the category, a table that contains columns for a
calculated category, a dependent measure table, or a depen-
dent filter table. In another example, the query generation
system generates a virtual results table by aggregating the
Uquery results from one Uquery with Uquery results from
another Uquery and reports the virtual results table.

32 Claims, 23 Drawing Sheets

100

102

DBMS
QUERY PROCESSOR

DATABASE(S)

T TABLE | { TABLE
B c

ABLE
A
\
108

104

]

108 o

US 9,135,296 B2

Page 2
(56) References Cited 6,385,603 Bl 5/2002 Chen et al.
6,397,204 Bl 5/2002 Liuet al.
U.S. PATENT DOCUMENTS 6,421,663 Bl 7/2002 Chen et al.
6,640,221 Bl 10/2003 Levine et al.
5,121,494 A 6/1992 Dias et al. 6,941,298 B2 9/2005 Chow et al.
5,241,648 A 8/1993 Cheng et al. 7,447,686 B2 11/2008 Levine
5,421,008 A 5/1995 Banning et al. 8,438,152 B2 52013 Ahmed
5,553,218 A 0/1996 Lietal. 2005/0240469 Al 10/2005 Roseetal.
5,557,791 A 9/1996 Cheng et al. 2007/0106643 Al* 5/2007 Croftetal.covvenrnne. 707/3
5590319 A 12/1996 Cohen et al. 2008/0052302 Al 2/2008 Dolley et al.
5,659,725 A 8/1997 Levy etal. 2008/0215534 Al 9/2008 Beavin et al.
5,680,603 A 10/1997 Bhargava et al. 2008/0294996 Al 11/2008 Hunt et al.
5721.900 A 2/1998 Banning et al. 2009/0012949 Al 1/2009 Thompson et al.
5721.901 A 2/1998 Banning et al. 2009/0077001 Al 3/2009 Macready et al.
5.802.357 A 0/1998 Ljetal 2013/0311442 Al 1/2013 Weber et al.
5842209 A 11/1998 Mocek et al.
5,983,215 A 11/1999 Ross et al. OTHER PUBLICATIONS
g’%é’ggg ﬁ %888 Efn%f:;{;;fl Notice of Allowance of Jul. 21, 2014 for U.S. Appl. No. 13/471,548,
6,167,399 A 12/2000 Hoang 7 pages.
6,356,896 Bl 3/2002 Cheng et al.
6,374,235 Bl 4/2002 Chen et al. * cited by examiner

US 9,135,296 B2

Sheet 1 of 23

Sep. 15, 2015

U.S. Patent

0Ll 801 90l
] 1]
9) q Y
Mgyl || Favl | | 3avL
(S)asvav.iva
\4\ y
0l
A
¥0SSF00Ud AHIND
\& Swea
01
bl
ya vl

00}

I

oLl

(S)od ¥3sn

\K

147"

U.S. Patent

Sep. 15, 2015 Sheet 2 of 23 US 9,135,296 B2

120

Receive Data Selections S
122

Generate Results Table a4

Using Uqueries

124

Provide Results Table S

FIG. 2

US 9,135,296 B2

Sheet 3 of 23

Sep. 15, 2015

U.S. Patent

¢ 9Ol

a|qe] SINSaY JapInold

SUONBID0SSY

\I\ A

8¢l

salanbn Buisn
o0 S)NSSY S)RJoUsL)

sjuauodwios wajl eleq

\

N uspuadsq
orl

A~ Juspusdapuj
vl

N D3jejalion
8¢l

A~ $8|ge | palinbay
9l

~ Sia}l4
el

A~ sol0b8]1e)
0ct

~ S3.INSEs|\
el

\f\

9¢l

SUON08|eS BIR(] BAIBOSY

vel

¢cl

U.S. Patent Sep. 15, 2015 Sheet 4 of 23 US 9,135,296 B2

197

~

Customer Dim

Cust_id
199 198
Account Fact Sales Fact
Payment Purchase

FIG. 4

US 9,135,296 B2

Sheet 5 of 23

Sep. 15, 2015

U.S. Patent

009

VS 'Old

Zhiobajen ¢aInNses L AloBeien
}SI7 10npo.d 1817 90ud 8p0J [e1sod
A 4 A
IR
L 2INSEa
pojeinoen
uoneziueblio waj|JspiQ lsuioysng 9p00 19343
A A
A 4
9INSea » RENIE
LelS Y funon

US 9,135,296 B2

Sheet 6 of 23

Sep. 15, 2015

U.S. Patent

€0s
408
10G

dG "old

00S

/\/ Zhiobaien £aINSEa | AloBaten)
ST 1onpoid 1817 80ud 8p0J [e1s0d

ERCHIE : -
#I\ 2Insealy 78.nSea|N
eI\ 3INSEal L8.nsea |y
ZI 2Insesy) PRIENIED

LN 9INSEay uoiyeziuebl W) "Jop! -
z0 Kiobaiey HeAUER0 IR0 SO 9p0) 1994

19 AioBajen ,)

A 4
#9INSE3 L Ja)ji-
1eIS S0 Anunon
uonoa[es [BUONBIOY
Bleq usab 10 [RUOISUBLI(‘[BPOJ BJeq Auy

US 9,135,296 B2

Sheet 7 of 23

Sep. 15, 2015

U.S. Patent

9 "Old

8|qe] Sinsay 8pinoig

salanbp e1ebalbby

Gl

3

gl

soInseay
D8)eja.lI09 JO 188 Yors
10} Kianb ajelauBg

salsnbn Buisn
9|ge . SINsay sjelsuss)

A

061

aInses|y
poje|a.LI0ouUn Yyoes
Joj Aianb(sjeseuss)

SUoNosjeg Bleq aAIsosYy

vl

el

0cl

U.S. Patent

122

J

Sep. 15, 2015

Sheet 8 of 23

US 9,135,296 B2

Generate Results Table

7

122

_

FIG. 7A

Generate Results Table

7

Create Virtual Table by 156
unioning results from
Uqueries of raw
measures
v
158
Run Aggregating Query
Against Virtual Table
157
Uquery aggregated T~
measure values
h 4
_ 159
Join results of each e
Uquery of aggregated
measures

FIG. 7B

US 9,135,296 B2

Sheet 9 of 23

Sep. 15, 2015

U.S. Patent

9)Ge} [eNniIA 9jBuIs B
se Jayiefio} pauoiun aie
(ssuanbn) sauanbgns |y

8 'Old

8|qe S)NSay 8piACIg

A
Gal

S|Je L [ENUIA
se seuenb pejebalbby

8|0e [enuiA JsuleBy
Aseng) bunebeaibby uny

SaINSesll paleje.lo0
J0 dnoub yoes Joj anjea
2INSBALI MBI 9ASLISY

ﬂ\\

122

€9l

Aianbq - (s)Aianbgns
2INSe3| PalRIRLI0)

19t

8.NSEa Pae|alind
-UOU Y28 Joj 8NjeA
ainseawl (pajebalbibe
-UN) MeJ 8AdLJeY

X

¢l

alqeL [BNJIA 8)eaI)

Aianbp - (s)Asenbgns
INSBAW Pa)B|SLI0d-UON

W\

094

SUON0S[BS BJe(SAIR08Y

vel

gl

9s)

0cl

US 9,135,296 B2

Sheet 10 of 23

Sep. 15, 2015

U.S. Patent

sdnoub Aiobs)es
U} Jo} anjeA ainsesu
Joyyeb o) Juswbas xy 01
paulof i (s)uswibas on

6 'Old

wrm\\

$9/qe)
9I0W IO | - S2Jnseau
PoJR|B.I00 JO 103

suwnjoo Aiobsies Jus wbes
I|e 88298 0} paulol 8q X\ Jed 8jow Jo 8uo
0} $9|qe} J0 198 Aynuap] - A1anbgns Juswbas g
~ ~ 1
[AYA ¥0¢

wow\\

o|qe} | -
2InSeaW P3L|e1I09-UON

a.nsesw Jad peurol 8q

Sainsea W paje[ali0d
JO 198 10 8insea W

0} S8|qje} JO 18s Ajijuap)

SN\

\l\

90¢

lad auo - ATenbqns

Aianbn

00C

U.S. Patent

Sep. 15, 2015

120

J

Receive Data Selections

v ~

Generate Uquery for
each uncorrelated
Measure

v ~

Generate Uquery for
each set of correlated
Measures

v ~

Aggregate Uqueries as
Virtual Table

v

Run Aggregating Query
Against Virtual Table

are unioned together as
a single virtual table

FIG. 10

Sheet 11 of 23 US 9,135,296 B2
Identify single Mx 174
segment for each ~~

Measure
v
176
|dentify 1 or more U0 |~/
segment(s) per Mx
Identify single Mx | 78
segment for each set of
correlated Measures
l' 180
|dentify 1 or more UQ L
segment(s) per Mx
segment
i] 165
All subqueries (Uqueries) 0

US 9,135,296 B2

Sheet 12 of 23

Sep. 15, 2015

U.S. Patent

se|qe} AioBejeq X\ PUE 8jge) Ll "OIld
~J emsypusemeqisixa| | AoBeje) e uasmag jsixe 808 (e 15UiBy
68, | 1euiseiqe)sajsuel) Aue O N 161 | ey} So|ge) Jajsuel] Aue © fuang Bugeba.B6y uny
s8jGe] sl o |
~~{ uspuadaq Aue o 59}]
181 \
8|0 paimbay
A~ wspuadag hue o 51qe fenpiA sjbus e
68l Se Jayjafio} pauoiun aJe o|qe L [enMIA
Sa|qe L ainseapy (sauanbn) selanbans 1y se salienbp ajebeibby
~~ wepuadag fue o ~
e8l 281 ¥
Asanbp auy Joj AioBajen (uswBas on e uiym
~ Pewenoje) e Jo suwnjoo Buieq woJy papnjoxe ale
181 | Urejuco Jey) sajgel Aue o X uiim Buiag se pauyap ~ S8INSea|y
Apealje e Jey) sejqey) 2l PaJRISLI0I JO 165 Y2ed
Asanbn & ioj Atobrer 0N Afuap] 10} kianby speseuey
6 Nﬂ(B UIRJLOD Jey) $a|qel Aue 0 \ 3 :
9.1
(se1qe) A1oBojen Jo sejge) Jsjsuel |
“B3) yjed uiof sy} uodn paseq ‘ss|qe) Jo aInses)\
/™1 18l 9AOGe B} USSMIB(81X ey $o|qe) Aue 0 XW AJAUSp] PaJeJaLIcIUN Yoes
Ll ~4 1oy lisnbp) sjessue
~ Soi0eL ¢ 0iL
o/l palinbay pajejano)) Aue 0 " I
Kanbp au) Joj ainses]y paleinojes
~~— ©J0Suwn|oo uIgluoa ey sajqe) Aue o
&Ll SU0I0BJaS Bleq 8A1999Y
. fuanbn 8y} jo} ainseayy A~
m B UJEJuod Jey) sajqe) Aue o 0zl

US 9,135,296 B2

Sheet 13 of 23

Sep. 15, 2015

U.S. Patent

s0/qe) fiobee) X pUe aige) ¢l "9Old
~J uessypusemaqiexa| | AoBejen e ussmiaq jsixs 3108, I JsURBY
1z | ey sajqe seysues) Aue o N giz | veup seigeyJajsuer Aue o fuane BuneBauBy uny
S8IGe L S8l 0 |
~{ uspusdaq Aue o 50})
602 \
$o|ge] palinbey
~{ juspuadag Aue o 81qe) Jeniia sibuss &
102 Se Jayyabo) pauciun ale o|de L [BNUIA
$90B 2INSEAY (sauanbi) sauanbans [y se sslianbp sjebebby
~ 1uspuadaq Aue o A~
502 28l)
Kianbp auy Joj AioBaje) (luowibss o & um
~ paeinofe) e jo suwnjoo Buiaq wos papnjoxa sie
coz | urejuoo Jey) saiqey Aue o X|A uyjim Buisq se pauyep ~ saInses|y
fipeayje ale jey) sa|qe)) zll Poe|eL09 JO 18S 4983
Assnbn) ay) 1o} Aiobisjer 0N Amuap] 104 Aianbp) sleleuso)
Sm(B UIBJU00 Jey) sojqe) Aue 0 \ 3 :
081
{s0/qe} Aiofiajer) Jo sa|qe) Jajsuel |
“63) yjed uiol oy} uodn paseq ‘ssjqe) o aInsespy
@@ﬂ(181 DAOGE AU} UsaMIa(1SIXa Jeu} Sa|qe) Aue 0 XN Amusp] Paje|aIcoun yes
~J Jophienbn ajessusg
~ Saldel ¢ 0L
161 paJinbay pejejaLion Aue o ol)
Asanbn au} Joj ainsealy pajeinojen)
~~{ ©J0Suwn|od Uejucd ey} ss|qe) Aue o
g6l SUOID81AS BJeq] aMI80aY
N Aionbp 8U Joj ainsesiy A~
o6l B UIBJUO? Jeu} S3|qe; Aue o 0zl

US 9,135,296 B2

Sheet 14 of 23

Sep. 15, 2015

U.S. Patent

06}

881

Sa.nsesu
pajejeLI09 jo dnoib
LOBS 10} BNjeA 8Insesll
pajebaibbe sasiey

¢l "Old

Aianbn - (s)Aisnbgns

8INSeaW pajejaL0d-uou
UOB? JOj aNfeA ainseaul
pojebalfbe anoley

8INSES palejeLlon

1

98l

fianbp - (s)hianbgns

ainseal pajee.iod-UoN

ﬁ\

3l

8|0 $)nsay apinold
N
174
»
$a.nsesil
paiebaibibe jo Aianbn
Yesjosynsaruor |
691
A
SONjeA ainseslu
pojeBalbbie Alanbp
AN
181
SUOIJ099S BIE(SAI908Y
TN
4

U.S. Patent Sep. 15, 2015 Sheet 15 of 23 US 9,135,296 B2

120

J

Receive Data Selections

184

F‘) |dentify single Mx 192
v segment for each -
Generate Uquery for Measure
each uncorrelated !
Measure 194
Identify 1 or more U0 |~/
segment(s) per Mx
186 |dentify single Mx 196
v ~ segment for each setof [
Generate Uquery for correlated Measures
each set of correlated ly 198
Measures Identify 1 ormore U0 [
segment(s) per Mx
segment

A 4 /J

Join results of each
Uquery of aggregated
measures

124

v ~

Provide Results Table

FIG. 14

U.S. Patent Sep. 15, 2015 Sheet 16 of 23 US 9,135,296 B2
1506 =
= » Orders Staff
= M4
1502 Street Code Order_ltem Organization
M1-Calculated Customer I
M2
1504 e = I\PAFéCG_LISt «—| Product_List
== Postal_Code =&
FIG. 15A
1506 % » Orders Staff
= M4
= ;
Y
1502 !!!!H!! OrderTItem Organization
M1-Calculated Customer
‘ M2
i
1504 e I\Pﬂréce_List le—| Product_List
= Postal_Code ==

=C1

BN

lf

]
It

FIG. 15B

US 9,135,296 B2

2%l 'OlId

Sheet 17 of 23

Sep. 15, 2015

U.S. Patent

8061
G m i
= J8I7 jonpoid —E g 1817 80l =
= = =
. I o=
== P00 eIOd = U g,
A4
uoneziuebiQ) |« E = = | .
jezuebio = B = = o0
= = — == —E« PagINoe-LIN
m wajj EEO!M M_ LmEQm:olw g// 7061
7'y \ w
U ,
<.S>_ ﬂ . 14
NS —Ee¢ Junog
el = siepi)—E AN\ e 9051
S ——

blGl

US 9,135,296 B2

Sheet 18 of 23

Sep. 15, 2015

U.S. Patent

816Gl

\

TS

- uoieziueblo

A

RHEHTHTNHIn

asi "old

EN

SIT onpoid 1 1si7e01g

8p0) 1e1sod

105

7051

wal|19pi0

AT
(TR TSI
A

— Jowojsn)

\

434

h 4

9161

A

SJ1opIO =

[T

AR

~

14347’

IR

¢

Pajeinded- 1IN
8p0Y JeauS

T AT

A

T

N

NAANAN\N

=
Aiunon

ANANNN

[T AR

/ 9061

US 9,135,296 B2

Sheet 19 of 23

V9l 'Ol

Sep. 15, 2015

U.S. Patent

- EN ROE==
ST jonpo > _ =
819l 1S 1onpo.d 1817 901id 3pOY IBISOd = _)
E g _ v
= =P = = BRI GRRAAR
= Uojeziuebl0 Y = = N
= : wie)"18pJQ = =0 parenajed- | N it
- = JPWOISN) 5 ap0) 19813 :_ /f 2001
= —— A
\ A
el N\ N
/////m vm En__‘o_ W m% Ec:oo/w//
= = = = SIONNWNNNE - 909)
N =B
NN =
- 2191

9191

US 9,135,296 B2

Sheet 20 of 23

Sep. 15, 2015

U.S. Patent

uoneziueblQ

A

d91 "Old

1SIT710npoId

PN
#eIsS

eI
1SIT70011d

waj| J8plQ

» SI8pIO

h

Jauoisny

h

O

ap09 [e1sod

[HHIHAT
T

/f 7091

A
TSI I

MR UTHITITTETY

THHTRTH

¢
PoleInoED-LIN
8p0J 198119

i

i
I

091

=
Aunon

US 9,135,296 B2

Sheet 21 of 23

ce9l O@—‘ .G_m 0€91
’ y

Sep. 15, 2015

T
> EN
}sIT onpoid JSIT 90l
E::____:__:_:__:__:::_ i RE:
oL 3pog I0d =] "\ 4q,
T vedl =
JE 1 v \ 4
J T = = =
uoneziuebio il = = = IN=E
| ! =m —El¢ =— pole|noje)- =
T wey~1epi0 == owolsny == = uwc_oofw@ww_ =
L] = = = = - 2001
U \ =
v T chol = // SONNNNE
= EINE
. . = ANy \E
g s18pIO | I[if” w/ NN m/ 9091
_:____:}:::__::::

U.S. Patent

9191 v19)

U.S. Patent

Sep. 15, 2015

Sheet 22 of 23

800
\,_\ 806 810
NN
COMPUTER-
READABLE
MEMORY
h 808
802 y
N
PROCESSING SYSTEM
8031 | DATABASE
MANAGEMENT
812
820
834
830
822 COMPUTER-
READABLE
USER PC MEMORY
832
822 828 824 v
N
USER PC <«—>»| SERVER(S)
822 : '
y
USER PC
836
827 PROCESSING SYSTEM
826 N DATABASE
~ MANAGEMENT

FIG.17B

US 9,135,296 B2

TABLE A

h

b 4

DATA
STORE(S)

TABLE B

TABLE A

DATA
STORE(S)

TABLE B

U.S. Patent Sep. 15, 2015 Sheet 23 of 23 US 9,135,296 B2
850
M~ 873 874
. N

_ 880

Keyboard Microphone .
Display

854 Sski 868

= Interf; o
nterrace Display
CPU Interface

852
L
860 856 858 872
G S N .
Disk Communication
Controller ROM RAM Ports
866
864 \’\
CD ROM Hard Drive
863/~ Floppy
Drive

FIG. 18

US 9,135,296 B2

1

SYSTEM, METHOD, AND DATA STRUCTURE
FOR AUTOMATICALLY GENERATING
DATABASE QUERIES WHICH ARE DATA
MODEL INDEPENDENT AND CARDINALITY
INDEPENDENT

FIELD

The technology described in this patent document relates
generally to computer-implemented database systems.

BACKGROUND

Computer implemented database systems may include a
query engine for generating queries to obtain data stored in
data tables. Often the kinds of questions that can be asked
regarding the data is limited due to factors such as cardinality
between specific tables and the types of tables utilized in the
datamodel. Ifthe types of questions asked are not limited then
the results provided from a query could be wrong or even
unattainable. Some systems utilize metadata, which describes
the data, when generating queries. This often results in the use
of complex metadata when generating certain queries, which
can be cumbersome and even limit the flexibility regarding
the various questions that can be asked regarding the data.

SUMMARY

In accordance with the teachings described herein, systems
and methods are provided for automatically generating a
query in a database system. In one example, a query genera-
tion system receives an identification of data item compo-
nents and associations between the data item components,
wherein the data item components include a measure and a
category, and wherein the identified association indicates that
the measure is independent of another data item component,
indicates that the measure is dependent on another data item
component, or indicates that two or more data item compo-
nents are correlated. The query generation system creates and
executes a database query for retrieving data item compo-
nents, wherein the database query includes a first Uquery,
wherein the first Uquery includes a Mx segment subquery and
a U0 segment subquery, wherein the Mx segment subquery is
associated with a table that contains the measure, a table that
contains columns for a calculated measure, or a correlated
table, and wherein the UO segment subquery is associated
with a table that contains the category, a table that contains
columns for a calculated category, a dependent measure table,
or a dependent filter table. In another example, the query
generation system generates a virtual results table by aggre-
gating the Uquery results from one Uquery with Uquery
results from another Uquery and reports the virtual results
table.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example system for auto-
matically generating database queries in a database system.

FIG. 2 is a flow diagram that depicts an example process
that a query processor may implement to provide data results
1o a user.

FIG. 3 is a flow diagram that illustrates two types of data
selections that may be received by a query processor: data
item components and associations.

FIG. 4 is a block diagram of an example database having
two fact tables (Sales and Account) with a common dimen-
sion table (Customer).

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 5A and 5B are block diagrams that depict an
example data mart that contains database tables that may be
accessed to generate data results.

FIG. 6 is a flow diagram that depicts an example process
that a query generation architecture executes to generate data
results.

FIGS. 7A and 7B are flow diagrams that illustrate that a
Uquery can be executed to produce raw (or detail level)
measure values or aggregated measure values.

FIG. 8 is a flow diagram that depicts an example process
that a query generation architecture may execute to generate
data results in the case where a Uquery is executed to produce
raw measure values.

FIG. 9is a flow diagram that depicts a Uquery that logically
comprises two subqueries: an Mx segment subquery and a U0
subquery.

FIG. 10 is a flow diagram that depicts another example
process that a query generation architecture may execute to
generate data results in the case where Uqueries are executed
to produce raw measure values.

FIG. 11 is a flow diagram that provides example rules for
identifying tables to be included in the Mx segment subquery
and the UOQ segment subquery(s) for a Uquery for an uncor-
related measure.

FIG. 12 is a flow diagram that provides example rules for
identifying tables to be included in the Mx segment subquery
and the UO segment subquery(s) for a Uquery for a set of
correlated measures.

FIGS. 13 and 14 are flow diagrams depicting example
methods for generating data results in the case where Uque-
ries are executed to produce aggregated measure values.

Depicted in FIGS. 15A-15D are example data mart infor-
mation maps that identify data tables that may be included in
the Mx segment and UO segment subqueries.

Depicted in FIGS. 16 A-16C are additional example data
mart information maps that identify data tables that may be
included in the Mx segment and U0 segment subqueries.

FIGS. 17A, 17B, and 18 depict examples of systems that
may be used to perform a query in a database system.

DETAILED DESCRIPTION

Depicted in FIG. 11is a block diagram of an example system
100 for automatically generating database queries in a data-
base system. The example query generation architecture
includes a query processor 102 for accessing one or more
databases 104 that store data tables 106, 108, 110. The query
processor 102 and the databases 104 may, for example, be
included in a federated database system. For instance, the
query processor 102 may be an SQL processor executing
within a database management system 112.

In operation, users may access the database management
system 112, for example, via user PC(s) 114 over one or more
network(s) 116. The query processor 102 utilizes data selec-
tion parameters supplied by a user to generate queries that
retrieve data results of interest to the user. The query proces-
sor 102 may then provide the data results to the user PC 114.

FIG. 2 depicts an example process that the query processor
102 may implement to provide data results to a user. At step
120 data selections are received from a user. At step 122, the
data results are retrieved by generating and executing one or
more queries. Finally, at step 124, the data results are pro-
vided to the user.

US 9,135,296 B2

3

FIG. 3 illustrates two types of data selections that are
received by the example query generation architecture: data
item components 126 and associations 128. The data item
components 126 provide an identification of categories 130,
measures 132, filters 134, and required tables 136 utilized in
the generation of data results. The associations 128 identify
relationships between the specified data item components
126. Required tables are tables that are implicitly included in
any data selection run against a data mart.

In the example system, three distinct levels of association
between the data item components 126 are specified. These
three levels of association, correlated 138, dependent 140,
and independent 142 (C/D/I), are relative to Measures 132.
Measures 132 can be correlated to, dependent on, or indepen-
dent of other measures 132, filters 134, and required tables
136. Each measure can have a different level of association to
these other components for a given data selection, thus allow-
ing the user to ask many different questions of the same group
of components. Also, measures 132 and filters 134 can be
independent of or dependent on categories 130.

With regard to a measure that is independent of another
measure, (a) each measure is calculated separately; (b) the
existence of other Measures for a given category group IS
NOT required in order to include values of the measure being
calculated for that category group; and (c) the measure will
not be inflated by many cardinality of other tables.

With regard to a measure that is dependent on another
measure, (a) each measure is calculated separately; (b) the
existence of other dependent measures for a given category
group IS required in order to include values of the measure
being calculated for that category group; and (¢) the measure
will not be inflated by many cardinality of other tables.

With regard to a measure that is correlated to another
measure, (a) both (all) measures are calculated together; (b)
the existence of other correlated measures for a given cat-
egory group IS required in order to include values of the
measure being calculated for that category group; and (c) the
measure will (can) be inflated by many cardinality of other
tables.

Thus, two measures can be related to each other in these
three different ways, and the calculations for each of these
cases could yield potentially different results depending upon
the physical data model. Also, regardless of the physical data
model and whether the results happen to be the same or
different, these three different relationships have three spe-
cific meanings which translate to three distinct, non-ambigu-
ous, questions being asked.

When there are more than two measures, the combination
of possible relationships between the various measures
results in many subtly different questions that can be asked.
Also, since Measures can have C/D/I associations to filters
and required tables, as well as with other measures and cat-
egories, many different, very specific questions, may be asked
of the same set of components.

FIG. 4 depicts a block diagram of an example database
having two fact tables (Sales and Account) with a common
dimension table (Customer). The data selection in this
example consists of a measure from each fact table and a
category from the dimension table wherein the measure from
the account fact table is the calculated measure sum_pay-
ment, the measure from the sales fact table is the calculated
meaure sum_purchase, and the category from the dimension
table is cust_id. Listed below are tables illustrating example
values for the two fact tables.

5

10

15

20

25

30

35

40

45

50

55

60

SALES FACT
cust_id sum_purchase
1 3
2 2
3 11
4 1
5 4
7 2
8 6
ACCOUNT FACT
cust_id sum_payment
1 23
3 56
4 15
5 10
6 17
7 23

The example results listed in the following three results
tables illustrate different results that can be obtained from a
query based on the C/D/I association between measures. In
the Correlated case, as depicted in the example table, when
the two measures are correlated, the measures can be inflated,
while not so in the dependent and independent cases. In the
Independent case, as depicted in the example table, when the
two measures are independent of each other, the example
results table includes results for customers who do not have
both purchases and payments, while the correlated and
dependent cases exclude results for those customers. In the
dependent case, as depicted in the example results table, when
the two measures are dependent on each other, the multiply-
ing effect of the many cardinality between the measure tables
is eliminated, while maintaining the filtering effect that the
measure tables have on each other.

Correlated Measures

cust_id sum_purchase sum_payment
1 6 46
3 44 224
4 2 30
5 4 20
7 4 46
Dependent Measures
cust_id sum_purchase sum_payment
1 3 23
3 11 56
4 1 15
5 4 10
7 2 23
Independent Measures
cust_id sum_purchase sum_payment
1 3 23
2 .
3 11 56
4 1 15

US 9,135,296 B2

5

-continued

Independent Measures

cust_id sum_purchase sum_payment
5 4 10
6 . 17
7 2 23
8 6 .

Each of these result sets can be the correct answer to a
slightly different question asked about the same data. Each
answer is valid and the ability to ask each question, as well as
know which question is being asked, is provided for by the
query generation architecture described herein. These ques-
tions are self-describing and independent of the physical data.

The query generation architecture described herein is data
model and cardinality independent. For a relational model,
such as a data mart for instance, there can be many different
levels of granularity. The many cardinality transition between
tables can be considered a transition to a different hierarchical
level. Within a data mart, there may be many of these transi-
tions. The query generation architecture described herein can
support a single result set that has categories and/or measures
atdifferent levels. This architecture can return different levels
of granularity within a single result set in a predictable, deter-
ministic way.

The query generation architecture described herein may
also provide the ability to get an aggregate number of NULL
values for a given measure. The query generation architecture
described herein may also provide the ability to segregate the
aggregate measures for a category value of NULL from non-
existing categories (measures that don’t correspond to any
category value), on a per measure basis.

The query generation architecture described herein oper-
ates with different types of data models, basic metadata which
describes the tables, columns and the join keys between the
tables, and an arbitrary combination of categories, measures,
filters and required tables, allowing for many different com-
binations of C/D/I association between these items, and auto-
matically generates the correct query for each of these pos-
sible cases.

Depicted in FIG. 5A is an example data mart that contains
database tables that may be accessed to generate data results.
The example data mart has two categories (category C1 and
category C2), four measures (measure M1, measure M2,
measure M3 and measure M4), and one filter (filter F1) con-
tained within the tables in the data mart. The lines between
tables show their join cardinalities—a straight end is a one
cardinality, while an arrow end is a many cardinality. As
illustrated in FIG. 5B, the query generation architecture can
ask many different questions from this one set of data items,
generating the appropriate query which gets the right answer
for each different question.

The query generation architecture can operate with difter-
ent types of data models with the knowledge of the C/D/I
association between the data item components. The query
generation architecture is also cardinality independent—for
any given question that can be asked, the correct SQL query
can be generated to accurately calculate the answer regardless
of the data model or the cardinality between any of the
tables—without the need for extra manipulation of the mod-
eling metadata to try to cause or ‘trick’ the software into
generating the correct query to get the correct results.

The query generation architecture does not use metadata to
identify the data model, tables are not tagged as fact or dimen-
sion, and a given map is not identified as dimensional (e.g., a

10

15

20

25

30

35

40

45

50

55

60

65

6

Star Schema) or relational. The query generation architecture
uses tables that are associated to each other through join
relationships.

FIG. 6 depicts an example process that the query genera-
tion architecture executes to generate data results. After
receiving data selections (step 120), the query generation
architecture generates and executes one or more of a special
type of query, referred herein as Uquery, and aggregates the
results of the Uqueries to generate a results table. In particu-
lar, the query generation architecture generates and executes
a Uquery for each uncorrelated measure (step 150), generates
and executes a Uquery for each set of correlated measures
(step 152), and aggregate the results of the Uqueries as a
results table (step 154).

FIGS. 7A and 7B depict that the Uqueries can be executed
to produce raw measure values or aggregated measure values.
In the case of Uqueries executing to produce raw measures, to
generate the results table, a virtual table can be created by
unioning results from Uqueries’ raw measures (step 156) and
an aggregating query can be run against the virtual table (step
158). Alternatively, Uqueries can be executed producing
aggregated measure values (step 157) and the results of the
Uqueries’ aggregated measures can be joined (step 159) to
generate the results table.

FIG. 8 depicts an example process that the query genera-
tion architecture may execute to generate data results in the
case where Uqueries are executed to produce raw measure
values. Non-correlated measure subquery(s) are generated
and executed (step 160). Correlated Measure subquery(s) are
generated and executed (step 162). The results from the non-
correlated measure subquery(s) and correlated measure sub-
query(s) are then aggregated as a virtual table (step 164). In
particular, the non-correlated measure subquery(s) involves
gathering raw (un-aggregated) measure values of each non-
correlated measure (step 161). The correlated measure sub-
query(s) involves gathering raw (un-aggregated) measure
values for each group of correlated measures (step 163). The
aggregate Uqueries as virtual table step is performed by
unioning together all the Uquery results as a single virtual
table (step 165).

As depicted in FIG. 9, each Uquery (200) logically com-
prises two subqueries: one is primarily related to measures
and is referred to herein as a measure (or Mx) segment sub-
query (202), and the other is primarily related to categories
and is referred to herein as an UO subquery (204). Each
Uquery has two goals: gather the appropriate set of measure
values and associate each to the correct category group. In
practice either of the Mx or U0 subqueries may be represented
by a single table. Alternatively, the UO subquery may be
segmented into multiple subqueries, i.e., multiple U0 seg-
ments.

Listed below is an example query showing an outer aggre-
gating query against the single virtual table (U1) which is
generated from two Uqueries, one for each of the two non-
correlated measures (M1 and M2) and wherein each Uquery
has U0 and Mx segments that are each a single table:

Select Ul.Coll as Cl,
SUM(UL.Col2) as M1,
AVG(U1.Col3) as M2

From

(
/* Uquery 1 */
Select U0.Coll, Mx.Col2, . as Col3
From uo
Inner join Mx
on Ul.keys = Mx.keys

US 9,135,296 B2

7

-continued

Union All
/* Uquery 2 */
Select U0.Coll, . as Col2, Mx.Col3
From uo
Inner join Mx
on U0.keys = Mx.keys
yul1
Group by C1

The columns that are selected for each Uquery in the
example query are: (i) each of the categories and (ii) each of
the measures, where all measures other than the one(s) being
gathered for that Uquery are selected as NULL. This allows
all measures to be: (a) associated to the correct category
group, (b) gathered separately, (¢c) Union’ed together, and (d)
aggregated correctly by the outer aggregating query.
Referring again to FIG. 9, each Uquery contains a single
Mx segment subquery and the Mx segment subquery is
related to either one measure or to a single set of correlated
measures (202). The Mx segment subquery identifies the
tables that must be joined to access the measure column(s)
(206). For correlated measures there are one or more tables
from which the columns for the Measures segment subquery
are derived (208). For non-correlated measures, there is one
measure table from which the column is derived, which is a
Mx Segment consisting of one table (210).
Each Uquery may contain one or more UQ segment sub-
queries (204). The U0 segments identify the set of tables that
must be joined together to access all of the columns in the set
of categories (there can be more than one category) (212). The
U0 segment(s) is identified independent of measures. The U0
segment(s) is joined to the Mx segment in order to gather the
raw measure values for the category groups (214).
FIG. 10 depicts another example process that the query
generation architecture may execute to generate data results
in the case where Uqueries are executed to produce raw
measure values. After receiving data selections (step 120), the
architecture generates a Uquery for each uncorrelated mea-
sure (step 170) and each correlated measure (step 172). In this
example process, generating a Uquery for each uncorrelated
measure involves identifying a single Mx segment for each
measure (step 174) followed by identifying 1 or more U0
segment(s) per Mx segment (step 176). Similarly, generating
a Uquery for each set of correlated measures involves identi-
fying a single Mx segment for each set of correlated measures
(step 178) followed by identifying 1 or more UO segment(s)
per Mx segment (step 180). The Uqueries are aggregated as a
virtual table (step 182). In this case, in which Uqueries are
executed to produce raw measure values, aggregating the
Uqueries is accomplished by unioning together the results
from all Uqueries into a single virtual table (step 165). After
the Uqueries have been aggregated, an aggregating query can
be run against the virtual table (step 158).
FIG. 11 illustrates example rules for identifying tables to
be included in the Mx segment subquery (step 174) and the
U0 segment subqueries (step 176) for a Uquery for an uncor-
related measure. In the illustrated example, the Mx segment
includes the following joined tables:
any tables that contain a measure for the Uquery (171);
any tables that contain columns of a calculated measure for
the Uquery (173);

any correlated required tables (175); and

any tables that exist between the above list of tables, based
upon the join path (177). These can be transfer tables or
category tables.

10

15

20

25

30

35

40

45

50

55

60

65

8

Transfer tables are tables in the join path between the tables
selected to be in the segment and from which no data is
selected.

The U0 segments are identified after their corresponding
Mx segment has been identified. The U0 segments help
account for the many cardinality concern. The U0 segments
only select the distinct set of categories and join keys that join
directly to Mx. Tables that are already defined as being within
Mx are excluded from being within a UO segment. In the
illustrated example, the U0 segments includes the following
joined tables:

any tables that contain a category for the Uquery (179)

any tables that contain columns of'a calculated category for

the Uquery (181);

any dependent measure tables (183);

any dependent required tables (185);

any dependent Filter tables (187);

any transfer tables that exist between different category

tables (189); and

any transfer tables that exist between a category table and

Mx (191).
A dependent measure table contains dependent measures,
which function to filter or restrict certain categories and/or
measure values from being included in the result set. A depen-
dent filter table contains columns of data for a filter on which
a measure is dependent. By including dependent or transfer
tables in a UO segment, possible concerns with many cardi-
nalities between tables are factored out. This helps allow for
cardinality independence.
FIG. 12 illustrates example rules for identifying tables to
be included in the Mx segment subquery (step 178) and the
U0 segment subqueries (step 180) for a Uquery for a set of
correlated measures. In the illustrated example, similar to the
FIG. 11 example, the Mx segment includes the following
joined tables:
any tables that contain a measure for the Uquery (193);
any tables that contain columns of a calculated measure for
the Uquery (195);

any correlated required tables (197); and

any tables that exist between the above list of tables, based
upon the join path (199). These can be transfer tables or
category tables.

The U0 segments are identified after their corresponding
Mx segment has been identified. Tables that are already
defined as being within Mx are excluded from being within a
U0 segment. In the illustrated example, similar to the FIG. 11
example, the U0 segments includes the following joined
tables:

any tables that contain a category for the Uquery (201)

any tables that contain columns of'a calculated category for

the Uquery (203);

any dependent measure tables (205);

any dependent required tables (207);

any dependent filter tables (209);

any transfer tables that exist between different category

tables (211); and

any transfer tables that exist between a category table and

Mx (213)

FIG. 12 also illustrates that rules for identifying tables to be
included in the Mx segment subquery and the U0 segment
subqueries for a Uquery can be the same for a set of correlated
measures and for uncorrelated measures. The rules for iden-
tifying tables to be included in the Mx segment subquery and
the U0 segment subqueries for a Uquery may also be the same
for the case where Uqueries are executed to produce raw
measure values and for the case where Uqueries are executed
to produce aggregated measure values.

US 9,135,296 B2

9

In addition to the rules illustrated in FIGS. 11 and 12, the
query generation architecture may apply the following rules:

Each Uquery selects a column for each category and mea-

sure along with any NMISS() Measure columns.

Each Uquery selects Missing (NULL) for any measures

that are not being gathered by that Uquery.

There is a special Uquery that can be included, if requested,

that selects Missing for all measure and is used to gather
a full list of possible category groups. This query uses
U0 with no MX and gathers all category groups includ-
ing those having all measures of Missing/NULL.

Each non-correlated measures is gathered in Mx of a single

Uquery

Each group of correlated measures are gathered in Mx of a

single Uquery

The set of columns (not aggregated measures) defined in a

calculated measure are correlated. They are treated as a
set of correlated measures, which can then be dependent
on, or correlated to other items; it’s the calculated mea-
sure itself that is dependent on or correlated to the other
items.

The columns selected from U0 and Mx for a given Uquery

are

UO0—Distinct: categories, keys to join to Mx segment

Mx—non-Distinct: measures, categories (if any in Mx),
keys to join to all U0 segments

This last rule can allow for cardinality independence.

FIG. 13 depicts an example process that the query genera-
tion architecture may execute to generate data results in the
case where Uqueries are executed to produce aggregated
measure values. Non-correlated measure subquery(s) are
generated and executed (step 184). Correlated measure sub-
query(s) are generated and executed (step 186). The results
from the non-correlated measure subquery(s) and correlated
measure sub-query(s) are joined as a results table (step 159).
In particular, the non-correlated measure subquery(s)
involves gathering aggregated measure values of each non-
correlated measure (step 188). The correlated measure sub-
query(s) involves gathering aggregated measure values for
each group of correlated measures (step 190).

FIG. 14 depicts another example process that the query
generation architecture may execute to generate data results
in the case where Uqueries are executed to produce aggre-
gated measure values. After receiving data selections (step
120), the architecture generates a Uquery for each uncorre-
lated measure (step 184) and each correlated measure (step
1186). In this example process, generating a Uquery for each
uncorrelated measure involves identifying a single Mx seg-
ment for each measure (step 192) followed by identifying 1 or
more U0 segment(s) per Mx segment (step 194). Similarly,
generating a Uquery for each set of correlated measures
involves identifying a single Mx segment for each set of
correlated measures (step 196) followed by identifying 1 or
more U0 segment(s) per Mx segment (step 198). The results
from the non-correlated measure subquery(s) and correlated
measure sub-query(s) are joined as a results table (step 159).

Depicted in FIGS. 15A-15D are example data mart infor-
mation maps that identify the data tables that may be included
in the Mx segment and UO segment subqueries. The data
selection items for the data marts in this example include the
following:

Data Selection Items:

C1: Category postal_code
M1: Measure avg((to_street_num-from_street_num)/2) as avg street_num

10

15

20

25

40

60

65

-continued
M2: Measure sum(from_street num) as sum_{from_num
M3: Measure sum(unit_sales_price) as sum_sales
M4: Measure sum(salary) as sum_salary
F1: Filter county_id

In the example data mart information maps depicted in
FIGS. 15A-15D, the data selections also include the follow-
ing associations. Each measure is independent of other mea-
sures. Each measure is dependent on the filter. With these data
selections there are four Uqueries—one for each independent
measure.

FIG. 15A identifies the tables included in the Uquery for
the M1 measure. The Uquery for M1 includes 1 Mx segment
and 2 U0 segments. The Mx segment includes the Street_
Code table because the M1 measure is included in that mea-
sure table. One UO segment includes the Postal_Code table
because the C1 Category is in that table. The other UO seg-
ment includes the Country table because the F1 filter is
included in that dependent filter table.

FIG. 15B identifies the tables included in the Uquery for
the M2 measure. The Uquery for M2 includes 1 Mx segment
and 2 U0 segments. The Mx segment includes the Street_
Code table because the M2 measure is included in that mea-
sure table. One UO segment includes the Postal_Code table
because the C1 Category is in that table. The other UO seg-
ment includes the Country table because the F1 filter is
included in that dependent filter table.

FIG. 15C identifies the tables included in the Uquery for
the M3 measure. The Uquery for M3 includes 1 Mx segment
and 1 U0 segment. The Mx segment includes the Price_List
table because the M3 measure is included in that measure
table. The U0 segment includes the Postal Code table
because the C1 Category is in that dependent category table.
The UO segment also includes the Street_Code, Customer,
Orders, Order_Item, and Product_List tables because those
transfer tables are interposed between the dependent category
table and the measure table. The U0 segment also includes the
Country table because the F1 filter is included in that depen-
dent filter table.

FIG. 15D identifies the tables included in the Uquery for
the M4 measure. The Uquery for M4 includes 1 Mx segment
and 1 UO segment. The Mx segment includes the Staff table
because the M4 measure is included in that measure table.
The UO segment includes the Postal_Code table because the
C1 Category is in that dependent category table. The U0
segment also includes the Street_Code, Customer, Orders,
and Organization tables because those transfer tables are
interposed between the dependent category table and the
measure table. The U0 segment also includes the Country
table because the F1 filter is included in that dependent filter
table.

Depicted in FIGS. 16A-16C are example data mart infor-
mation maps that identify the data tables that may be included
in the Mx segment and UO segment subqueries. The data
selection items for the data marts in this example include the
following:

Data Selection Items:

C1: Category postal_code

M1: Measure avg((to_street_num-from_street_num)/2) as avg street_num
M2: Measure sum(from_street num) as sum_{from_num
M3: Measure sum(unit_sales_price) as sum_sales

M4: Measure sum(salary) as sum_salary

F1: Filter county_id

US 9,135,296 B2

11

In the example data mart information maps depicted in
FIGS. 16 A-16C, the data selections also include the follow-
ing associations. M1 is Dependent on M4 and F1 (but M4 is
not Dependent on M1), M3 and M4 are Correlated and
Dependent on F1, and M2 is Independent of everything (all
M’s and F1). With these data selections there are three Uque-
ries—one each for M1, M2, and the correlated set of M3 and
M4.

FIG. 16A identifies the tables included in the Uquery for
the M1 measure. The Uquery for M1 includes 1 Mx segment
and 3 UO segments. The Mx segment includes the Street_
Code table because the M1 measure is included in that mea-
sure table. One U0 segment includes the Postal_Code table
because the C1 Category is in that table. A second U0 segment
includes the Country table because the F1 filter is included in
that dependent filter table. A third U0 segment includes the
Staff table because the dependent M4 measure is in that
dependent measure table. The third U0 segment also includes
the Customer, Orders, and Organization tables because those
transfer tables are interposed between the dependent measure
table and the measure table.

FIG. 16B identifies the tables included in the Uquery for
the M2 measure. The Uquery for M2 includes 1 Mx segment
and 1 U0 segment. The Mx segment includes the Street_Code
table because the M2 measure is included in that measure
table. The U0 segment includes the Postal_Code table
because the C1 Category is in that table. No other UO seg-
ments are needed because M2 is independent of other mea-
sures and filters.

FIG. 16C identifies the tables included in the Uquery for
the set of correlated M3 and M4 measures. The Uquery for
correlated set includes 1 Mx segment and 1 UO segment. The
Mx segment includes the Price_List table because the M3
measure is included in that measure table. The Mx segment
also includes the Staff table because the M4 measure is
included in that measure table. Additionally, the Mx segment
includes the Product_List, Order_Item, Orders, and Organi-
zation tables because those transfer tables are interposed
between the Price_List and Staff measure tables. The UO
segment includes the Postal_Code table because the C1 Cat-
egory is in that dependent category table. The UO segment
also includes the Country table because the F1 filter is
included in that dependent filter table. The U0 segment also
includes the Street_Code and Customer tables because those
transfer tables are interposed between the dependent category
table and the tables included in Mx.

FIGS. 17A and 17B depict examples of systems that may
be used to perform a query in a database system. For example,
FIG. 17A depicts an example of a system 800 that includes a
standalone computer architecture where a processing system
802 (e.g., one or more computer processors) includes a data-
base management application 804 being executed on it. The
processing system 802 has access to a computer-readable
memory 806 in addition to one or more data stores 808. The
one or more data stores 808 may include tables 810, 812 upon
which the query operation is to be performed.

FIG. 17B depicts a system 820 that includes a client server
architecture. One or more user PCs 822 access one or more
servers 824 running a database management program 826 on
a processing system 827 via one or more networks 828. The
one or more servers 824 may access a computer readable
memory 830 as well as one or more data stores 832. The one
or more data stores 832 may contain tables 834, 836 upon
which the query operation is to be performed.

FIG. 18 shows a block diagram of an example of hardware
for a standalone computer architecture 850, such as the archi-
tecture depicted in FIG. 17A that may be used to contain

10

15

20

25

30

35

40

45

50

55

60

65

12

and/or implement the program instructions of system
embodiments of the present invention. A bus 852 may con-
nect the other illustrated components of the hardware. A
processing system 854 labeled CPU (central processing unit)
(e.g., one or more computer processors), may perform calcu-
lations and logic operations required to execute a program. A
processor-readable storage medium, such as read only
memory (ROM) 856 and random access memory (RAM)
858, may be in communication with the processing system
854 and may contain one or more programming instructions
for performing an index join operation. Optionally, program
instructions may be stored on a computer readable storage
medium such as a magnetic disk, optical disk, recordable
memory device, flash memory, or other physical storage
medium. Computer instructions may also be communicated
via a communications signal, or a modulated carrier wave.

A disk controller 860 interfaces one or more optional disk
drives to the system bus 852. These disk drives may be exter-
nal or internal floppy disk drives such as 862, external or
internal CD-ROM, CD-R, CD-RW or DVD drives such as
864, or external or internal hard drives 866. As indicated
previously, these various disk drives and disk controllers are
optional devices.

Each of the element managers, real-time data buffer, con-
veyors, file input processor, database index shared access
memory loader, reference data buffer and data managers may
include a software application stored in one or more of the
disk drives connected to the disk controller 860, the ROM 856
and/or the RAM 858. Preferably, the processor 854 may
access each component as required.

A display interface 868 may permit information from the
bus 852 to be displayed on a display 870 in audio, graphic, or
alphanumeric format. Communication with external devices
may optionally occur using various communication ports
872.

In addition to the standard computer-type components, the
hardware may also include data input devices, such as a
keyboard 873, or other input device 874, such as a micro-
phone, remote control, pointer, mouse and/or joystick.

This written description uses examples to disclose the
invention, including the best mode, and also to enable a per-
son skilled in the art to make and use the invention. The
patentable scope of the invention may include other
examples. Additionally, the methods and systems described
herein may be implemented on many different types of pro-
cessing devices by program code comprising program
instructions that are executable by the device processing sub-
system. The software program instructions may include
source code, object code, machine code, or any other stored
data that is operable to cause a processing system to perform
the methods and operations described herein. Other imple-
mentations may also be used, however, such as firmware or
even appropriately designed hardware configured to carry out
the methods and systems described herein.

The systems’ and methods’ data (e.g., associations, map-
pings, data input, data output, intermediate data results, final
data results, etc.) may be stored and implemented in one or
more different types of computer-implemented data stores,
such as different types of storage devices and programming
constructs (e.g., RAM, ROM, Flash memory, flat files, data-
bases, programming data structures, programming variables,
IF-THEN (or similar type) statement constructs, etc.). It is
noted that data structures describe formats for use in organiz-
ing and storing data in databases, programs, memory, or other
computer-readable media for use by a computer program.

The computer components, software modules, functions,
data stores and data structures described herein may be con-

US 9,135,296 B2

13

nected directly or indirectly to each other in order to allow the
flow of data needed for their operations. It is also noted that a
module or processor includes but is not limited to a unit of
code that performs a software operation, and can be imple-
mented for example as a subroutine unit of code, or as a
software function unit of code, or as an object (as in an
object-oriented paradigm), or as an applet, or in a computer
script language, or as another type of computer code. The
software components and/or functionality may be located on
a single computer or distributed across multiple computers
depending upon the situation at hand.
It should be understood that as used in the description
herein and throughout the claims that follow, the meaning of
“a,” “an,” and “the” includes plural reference unless the con-
text clearly dictates otherwise. Also, as used in the description
herein and throughout the claims that follow, the meaning of
“in” includes “in” and “on” unless the context clearly dictates
otherwise. Finally, as used in the description herein and
throughout the claims that follow, the meanings of “and” and
“or” include both the conjunctive and disjunctive and may be
used interchangeably unless the context expressly dictates
otherwise; the phrase “exclusive or” may be used to indicate
situation where only the disjunctive meaning may apply.
It is claimed:
1. A system, comprising:
a processor configured to perform operations that include
receiving an identification of data item components and an
identification of associations between the data item
components, wherein the data item components include
measures and a category, and wherein the identified
associations include at least two different associations
from the associations comprising an indication that one
measure is independent of other measures, an indication
that one measure is dependent on another measure, and
an indication that two or more measures are correlated;

creating a database query for retrieving data item compo-
nents, wherein the database query includes a first
Uquery, wherein the first Uquery includes a Mx segment
subquery and a U0 segment subquery, wherein the Mx
segment subquery is operable to gather measures and is
associated with an Mx segment table that contains the
measures included in the data item components, col-
umns for a calculated measure, or correlated measures,
and wherein the UQ segment subquery is associated with
a table that contains the category, a table that contains
columns for a calculated category, a dependent measure
table, or a dependent filter table, and wherein the U0
segment subquery further facilitates selecting a set of
categories and join keys, the join keys of the set includ-
ing join keys that join directly to the Mx segment sub-
query;

executing each Mx segment subquery to generate Mx seg-

ment subquery results;

executing each U0 segment subquery to generate U0 seg-

ment subquery results;
joining Mx segment subquery results from each Uquery
with the UO segment subquery results from the same
Uquery to generate Uquery results;

generating a virtual results table by aggregating the Uquery
results from one Uquery with Uquery results from
another Uquery; and

reporting the virtual results table.

2. The system of claim 1, wherein the data item compo-
nents further include a filter.

3. The system of claim 2, wherein the identified associa-
tions further include an indication that a measure is dependent
on the filter.

20

25

40

45

55

65

14

4. The method of claim 3, wherein the identified associa-
tions further include an indication that a measure is not depen-
dent on the filter.
5. The system of claim 1, wherein the identified associa-
tions further include an indication that a measure is not depen-
dent on the category.
6. The system of claim 1, wherein at least one Mx segment
subquery is associated with a table that contains a transfer
table or a category table.
7. The system of claim 1, wherein at least one U0 segment
subquery is associated with a transfer table between category
tables or a transfer table between a category table and a
measure table.
8. The system of claim 1, wherein at least one U0 segment
subquery is associated with a dependent required table.
9. The system of claim 1, wherein generating the virtual
results table includes joining the Uquery results with the
results from another Uquery.
10. The system of claim 1, wherein generating the virtual
results table includes unioning the Uquery results with the
results from another Uquery and applying an aggregating
query to the unioned results to generate the virtual results
table.
11. A computer-program product comprising a non-transi-
tory machine-readable storage medium operable to cause a
data processing apparatus to perform operations including:
receiving an identification of data item components and an
identification of associations between the data item
components, wherein the data item components include
measures and a category, and wherein the identified
associations include at least two different associations
from the associations comprising an indication that one
measure is independent of other measures, an indication
that one measure is dependent on another measure, and
an indication that two or more measures are correlated;

creating a database query for retrieving data item compo-
nents, wherein the database query includes a first
Uquery, wherein the first Uquery includes a Mx segment
subquery and a U0 segment subquery, wherein the Mx
segment subquery is operable to gather measures and is
associated with an Mx segment table that contains the
measures included in the data item components, col-
umns for a calculated measure, or correlated measures,
and wherein the UO segment subquery is associated with
a table that contains the category, a table that contains
columns for a calculated category, a dependent measure
table, or a dependent filter table, and wherein the U0
segment subquery further facilitates selecting a set of
categories and join keys, the join keys of the set includ-
ing join keys that join directly to the Mx segment sub-
query;

executing each Mx segment subquery to generate Mx seg-

ment subquery results;

executing each U0 segment subquery to generate U0 seg-

ment subquery results;
joining Mx segment subquery results from each Uquery
with the UO segment subquery results from the same
Uquery to generate Uquery results;

generating a virtual results table by aggregating the Uquery
results from one Uquery with Uquery results from
another Uquery; and

reporting the virtual results table.

12. The computer-program product of claim 11, wherein
the data item components further include a filter.

13. The computer-program product of claim 12, wherein
the identified associations further include an indication that a
measure is dependent on the filter.

US 9,135,296 B2

15

14. The computer-program product of claim 13, wherein
the identified associations further include an indication that a
measure is not dependent on the filter.

15. The computer-program product of claim 14, wherein
the identified associations further include an indication that a
measure is not dependent on the category.

16. The computer-program product of claim 15, wherein at
least one Mx segment subquery is associated with a table that
contains a transfer table or a category table.

17. The computer-program product of claim 16, wherein at
least one U0 segment subquery is associated with a transfer
table between category tables or a transfer table between a
category table and a measure table.

18. The computer-program product of claim 17, wherein at
least one UO segment subquery is associated with a dependent
required table.

19. The computer-program product of claim 18, wherein
generating the virtual results table includes joining the
Uquery results with the results from another Uquery.

20. The computer-program product of claim 19, wherein
generating the virtual results table includes unioning the
Uquery results with the results from another Uquery and
applying an aggregating query to the unioned results to gen-
erate the virtual results table.

21. A computer-program product comprising:

a non-transitory machine-readable storage medium that
stores instructions operable to cause a data processing
apparatus to perform operations including:

receiving an identification of data item components and an
identification of an association between the data item
components, wherein the data item components include
a measure and a category, and wherein the identified
association indicates that the measure is independent of
another data item component, indicates that the measure
is dependent on another data item component, or indi-
cates that two or more data item components are corre-
lated;

creating a database query for retrieving data item compo-
nents, wherein the database query includes a first
Uquery, wherein the first Uquery includes a Mx segment
subquery and a U0 segment subquery, wherein the Mx
segment subquery is operable to gather measures and is
associated with an Mx segment table that contains the
measure included in the data item components, columns
for a calculated measure, or correlated measures, and
wherein the U0 segment subquery is associated with a
table that contains the category, a table that contains
columns for a calculated category, a dependent measure
table, or a dependent filter table, and wherein the U0
segment subquery further facilitates selecting a set of
categories and join keys, the join keys of the set includ-
ing join keys that join directly to the Mx segment sub-

query;

10

15

20

25

30

35

40

45

50

16

executing the Mx segment subquery to generate Mx seg-

ment subquery results;

executing the UO segment subquery to generate UO seg-

ment subquery results; and

joining the Mx segment subquery results with the U0 seg-

ment subquery results to generate Uquery results.

22. The computer-program product of claim 21, wherein
the operations further include:

generating Uquery results for a second Uquery;

generating a virtual results table by aggregating the Uquery

results from the first Uquery with Uquery results from
the second Uquery; and

reporting the virtual results table.

23. The computer-program product of claim 22, wherein
generating the virtual results table includes joining the
Uquery results from the first Uquery with Uquery results
from the second Uquery.

24. The computer-program product of claim 22, wherein
generating the virtual results table includes unioning the
Uquery results from the first Uquery with Uquery results
from the second Uquery and applying an aggregating query to
the unioned results to generate the virtual results table.

25. The computer-program product of claim 22, wherein
the data item components further include a filter and further
comprising receiving an identified association that indicates
that a data item component is dependent on the filter.

26. The computer-program product of claim 22, wherein
the data item components further include a filter and wherein
the operations further include receiving an identified associa-
tion that indicates that a data item component is not dependent
on the filter.

27. The computer-program product of claim 22, wherein
the operation further include: receiving an identified associa-
tion that indicates that a data item component is not dependent
on the category.

28. The computer-program product of claim 22, wherein
the operations further include: receiving an identified asso-
ciation that indicates that a category is independent of a
measure.

29. The computer-program product of claim 27, wherein
the operation further include: receiving an identified associa-
tion that indicates that a category is independent of a filter.

30. The computer-program product of claim 22, wherein
multiple cardinality exists between tables associated with the
Uqueries.

31. The computer-program product of claim 21, wherein
the first Uquery includes multiple UO subquery segments.

32. The computer-program product of claim 21, wherein
results from the multiple U0 subquery segments are joined
with the Mx segment results.

#* #* #* #* #*

